

# TARGET SYSTEM FOR COLLIMATED MUON BEAM PRODUCTION

M. Bauce, G. Cesarini, R. Li voti, G. Cavoto, F. Collamati, F. Casaburo, F. Anulli

APS April Meeting 2021, April 17-20 - Muon Collider Symposium

#### LEMMA NOVEL APPROACH

- positron-driven muon production:
  - asymmetric e+e-→µ+µ-
  - above  $\sqrt{s} = 0.212$  GeV (i.e. 45 GeV e+ beam on target)
  - low-emittance muon beam produced



# LEMMA NOVEL APPROACH

- positron-driven muon production:
  - asymmetric e+e-→µ+µ-
  - above  $\sqrt{s} = 0.212$  GeV (i.e. 45 GeV e+ beam on target)
  - low-emittance muon beam produced





**Positron Ring** 

Image may differ in

appearance from

the actual product

# LEMMA NOVEL APPROACH

- positron-driven muon production:
  - asymmetric e+e-→µ+µ-
  - above  $\sqrt{s} = 0.212$  GeV (i.e. 45 GeV e+ beam on target)
  - low-emittance muon beam produced



 $N_{\mu^{+}\mu^{-}} = N_{e+} \cdot \rho_{e-} \cdot L \cdot \sigma(e^{+}e^{-} \to \mu^{+}\mu^{-})$ 

Maximize the rest

Small cross section: O(1 µb)



**Positron Ring** 

Image may differ in

appearance from

the actual product

#### MUON PRODUCTION ON TARGETS



- produce muons but also
- preserve positron beam (multiple scattering)

from simulations: 3% of e+ lost in the target on average

#### MUON PRODUCTION ON TARGETS



- produce muons but also
- preserve positron beam (multiple scattering)
  from simulations: 3% of e+ lost in the target on average

# Intermediate-Z materials: Be, C, Li

- low-emittance and small e+ loss
- decent μ+μ- production efficiency (10-6 μ+μ-/e+e-)

O(100 kW) power load

(with high Peak Energy Density Deposition)

#### MUON PRODUCTION ON TARGETS



- produce muons but also
- preserve positron beam (multiple scattering)
   from simulations: 3% of e+ lost in the target on average

# Intermediate-Z materials: Be, C, Li

- low-emittance and small e+ loss
- decent μ+μ- production efficiency (10-6 μ+μ-/e+e-)

O(100 kW) power load

(with high Peak Energy Density Deposition)

# Simulated Benchmark Scenario Bunch/Trains beam patterns

- $N_{e+}: 3x10^{11} e^{+}/bunch$
- bunch duration: 10 ps
- Nbunches: 100
- T<sub>pulse</sub>: 400 ns (between bunches)
- $T_{train} = T_{pulse} \cdot N_{bunches}$ : 40 µs
- $T_{rep} = 0.1 s$



Target: 3 mm thick Be, 1 mm thick C

#### ENERGY DEPOSIT SIMULATION



- FLUKA simulation of deposited energy from a single positron bunch
- Converted into Heat density for different target materials and thicknesses

# ENERGY DEPOSIT SIMULATION



- FLUKA simulation of deposited energy from a single positron bunch
- Converted into Heat density for different target materials and thicknesses



#### THEORETICAL MODELLING FOR THERMAL EVOLUTION



- Splitting target volume in voxels profiting from axial symmetry
- From energy deposition, simulate diffusion and radiation evolution with Finite-difference time-domain (FDTD) method

#### THEORETICAL MODELLING FOR THERMAL EVOLUTION

k: therm. conductivity L: ch. length ho: density  $P_{cw}$ : dissipate  $c_p$ : spec. heat S: target such

 $F_O$ : Fourier number

D: therm. diffusivity

L: ch. length  $P_{cw}$ : dissipated power S: target surface  $C_{max,a}$ : peak dep. E: emissivity



- Splitting target volume in voxels profiting from axial symmetry
- From energy deposition, simulate diffusion and radiation evolution with Finite-difference time-domain (FDTD) method

#### **Every single bunch**

$$\nabla \cdot (-k \cdot \nabla T) + dR = \rho c_p \frac{\partial T}{\partial t}$$

numerical heat transfer convergence for Fourier number Fo satisfying:

$$F_O = \frac{D\Delta t}{L^2} \le \frac{1}{2} \implies \Delta t \le \frac{\min(\Delta r^2, \Delta z^2)}{2D_{\max}}$$

define a set of differential equations for T evolution

# THEORETICAL MODELLING FOR THERMAL EVOLUTION

k: therm. conductivity

 $\rho$ : density

 $c_p$ : spec. heat

 $F_O$ : Fourier number

D: therm. diffusivity

L: ch. length

 $P_{cw}$ : dissipated power

S: target surface

 $C_{max,a}$ : peak dep. E

 $\epsilon$ : emissivity



- Splitting target volume in voxels profiting from axial symmetry
- From energy deposition, simulate diffusion and radiation evolution with Finite-difference time-domain (FDTD) method

#### **Every single bunch**

$$\nabla \cdot (-k \cdot \nabla T) + dR = \rho c_p \frac{\partial T}{\partial t}$$

numerical heat transfer convergence for Fourier number Fo satisfying:

$$F_O = \frac{D\Delta t}{L^2} \le \frac{1}{2} \implies \Delta t \le \frac{\min(\Delta r^2, \Delta z^2)}{2D_{\max}}$$

define a set of differential equations for T evolution

#### Target radiation in Steady-state regime

$$P_{cw} = \epsilon \sigma \left( T^4 - T_{room}^4 \right) S = m c_p \frac{\partial T}{\partial t}$$

$$\Delta T = \sqrt{T_{amb}^4 + \left(\frac{a^2 \cdot L}{r^2 + r \cdot L}\right) \frac{C_{max,a} \cdot N_{part \cdot N_{pulses}}}{\epsilon \cdot \sigma_B \cdot T_{rep}}} - T_{amb}$$

# HEAT TIME EVOLUTION

#### Single bunch on the target



#### HEAT TIME EVOLUTION





#### HEAT TIME EVOLUTION





#### TARGET TEMPERATURE RISE

 Pyrolytic Graphite (C) reaches higher temperature but has higher melting point



#### TARGET TEMPERATURE RISE

 Pyrolytic Graphite (C) reaches higher temperature but has higher melting point



#### TARGET TEMPERATURE RISE

 Pyrolytic Graphite (C) reaches higher temperature but has higher melting point





Temperature reached after 100 pulses is smaller than 100x that reached after a single pulse:

though small, a diffusion process starts before the end of the train!





Target reaches the Steady-state
 Temperature after O(100 s)

Simplified model for *T* evolution on longer timescale based on target radiation: agreement with FDTD within 10%



REGIME

STEADY-

AND

**HEATING** 

Target reaches the Steady-state
 Temperature after O(100 s)

10%

Simplified model for *T* evolution on longer timescale based on target radiation: agreement with FDTD within



Simulations for R=2.5 cm due to computational limits

#### TARGET THERMOMECHANICAL STRESSES

- Evaluate thermomechanical stresses due to material thermal gradients
- Axially unrestrained plane strain, assuming a constant axial strain

$$\sigma_{rr} = \frac{E}{1 - \nu} \left[ \frac{1}{R^2} \int_0^R \alpha \theta(r, t) r \, dr - \frac{1}{r^2} \int_0^r \alpha \theta(r, t) r \, dr \right] \quad \text{Radial Stress}$$

$$\sigma_{zz} = \frac{E}{1 - \nu} \left[ \frac{2}{R^2} \int_0^R \alpha \theta(r, t) r \, dr - \alpha \theta(r, t) \right] \quad \text{Hoop Stress}$$

$$\sigma_{\theta\theta} = \frac{E}{1 - \nu} \left[ \frac{1}{R^2} \int_0^R \alpha \theta(r, t) r \, dr - \frac{1}{r^2} \int_0^r \alpha \theta(r, t) r \, dr - \alpha \theta(r, t) \right] \quad \text{Axial Stress}$$

#### TARGET THERMOMECHANICAL STRESSES

#### Christensen generalised failure criterion

based on thermomechanical stresses

$$\left(\frac{1}{T} - \frac{1}{C}\right) \left(\sigma_{rr} + \sigma_{\theta\theta} + \sigma_{zz}\right) + \frac{1}{2TC} \left[ (\sigma_{rr} - \sigma_{\theta\theta})^2 + (\sigma_{\theta\theta} - \sigma_{zz})^2 + (\sigma_{zz} - \sigma_{\theta\theta})^2 \right] \le 1$$

- Failure response depends on the target material, beam spot size and multi-pulse rate
- Pyrolytic Graphite is in general a better candidate to sustain generated stresses

#### TARGET THERMOMECHANICAL STRESSES

#### Christensen generalised failure criterion

based on thermomechanical stresses

$$\left(\frac{1}{T} - \frac{1}{C}\right) \left(\sigma_{rr} + \sigma_{\theta\theta} + \sigma_{zz}\right) + \frac{1}{2TC} \left[ (\sigma_{rr} - \sigma_{\theta\theta})^2 + (\sigma_{\theta\theta} - \sigma_{zz})^2 + (\sigma_{zz} - \sigma_{\theta\theta})^2 \right] \le 1$$

- Failure response depends on the target material, beam spot size and multi-pulse rate
- Pyrolytic Graphite is in general a better candidate to sustain generated stresses





#### PLANNING AHEAD

#### Target crash test with photons

Ex ante ex post characterisation



Optic: 17 mm, calibrated in the range [-80 °C, +300 °C]

#### PLANNING AHEAD

#### Target crash test with photons

Ex ante ex post characterisation



Irradiation tests with electrons at MAinzer Microtron facility (Mainz, D)

Beam intensities: 1 nA - 50  $\mu$ A Beam spot size: down to 10  $\mu$ m





Compare model predictions with experimental data!

Optic: 17 mm, calibrated in

the range [-80 °C, +300 °C]

#### SUMMARY

The Muon Collider is a *dream machine* with a lot of challenges to face but the European Strategy definition gathered increasing interest in this project

- The LEMMA option is quite challenging and the role of target complex is crucial
- FDTD-based model to simulate target thermal evolution and thermomechanical stresses
- Planning irradiation tests for model validation and target failure studies

R&D activity ongoing for target complex optimisation!



# **BACKUP**

"you never know what you might need"